On local generalized minimizers and local stress tensors for variational problems with linear growth

نویسندگان

  • Darya Apushkinskaya
  • Michael Bildhauer
  • Martin Fuchs
چکیده

Uniqueness and regularity results for local vector-valued generalized minimizers and for local stress tensors associated to variational problems with linear growth conditions are established. Assuming that the energy density f has the structure f(Z) = h(|Z|), only very weak ellipticity assumptions are required. For the proof we combine arguments from measure theory and convex analysis with the regularity results of [ABF].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting the location of the boundary layers in singular perturbation problems with general linear non-local boundary ‎conditions‎

Singular perturbation problems have been studied by many mathematicians. Since the approximate solutions of these problems are as the sum of internal solution (boundary layer area) and external ones, the formation or non-formation of boundary layers should be specified. This paper, investigates this issue for a singular perturbation problem including a first order differential equation with gen...

متن کامل

Regularity Results for Local Minimizers of Energies with General Densities Having Superquadratic Growth

Variational integrals whose energy densities are represented by Nfunctions h of at least quadratic growth are considered. Under rather general conditions on h, almost everywhere regularity of vector-valued local minimizers is established, and it is possible to include the case of higher order variational problems without essential changes in the arguments. §

متن کامل

Second-order Variational Analysis and Characterizations of Tilt-stable Optimal Solutions in Finite and Infinite Dimensions1

The paper is devoted to developing second-order tools of variational analysis and their applications to characterizing tilt-stable local minimizers of constrained optimization problems in finite-dimensional and infinite-dimensional spaces. The importance of tilt stability has been well recognized from both theoretical and numerical aspects of optimization. Based on second-order generalized diff...

متن کامل

Full Stability of Locally Optimal Solutions in Second-Order Cone Programs

The paper presents complete characterizations of Lipschitzian full stability of locally optimal solutions to problems of second-order cone programming (SOCP) expressed entirely in terms of their initial data. These characterizations are obtained via appropriate versions of the quadratic growth and strong second-order sufficient conditions under the corresponding constraint qualifications. We al...

متن کامل

Characterizations of Full Stability in Constrained Optimization

This paper is mainly devoted to the study of the so-called full Lipschitzian stability of local solutions to finite-dimensional parameterized problems of constrained optimization, which has been well recognized as a very important property from both viewpoints of optimization theory and its applications. Based on secondorder generalized differential tools of variational analysis, we obtain nece...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008